Contribution from the Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, West Midlands, United Kingdom, and the Bourne Laboratory, Department of Chemistry, Royal Holloway College, University of London, Egham Hill, Egham, Surrey TW20 OEX, United Kingdom

Ionic Isomerism. 2. Calculations of Thermodynamic Properties of Phosphorus(V) Chloride Isomers: $\Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g}))$ and $\Delta H_f^{\Theta}(\text{PCl}_6^-(\text{g}))$

HARRY DONALD BROOKE JENKINS,* KAILASH PRASAD THAKUR, ARTHUR FINCH, and PETER **N.** GATES

Received January 20, I981

Lattice energy calculations have been made for the following three ionic models of phosphorus(V) chloride: PCl_4+PCl_6 -("normal", phase II), $2PCl_4+PCl_6-Cl^-$ ("metastable", phase III) and a postulated species, PCl_4+Cl^- . These values lead to estimates of $\Delta H_l^{\Theta}(\text{PCl}_4^+(\text{g})) = 462.4$ and $\Delta H_l^{\Theta}(\text{PCl}_6^-(\text{g})) = -880.4 \text{ kJ}$ mol⁻¹ from which chloride ion affinities of PCl₅ and $PCl₄⁺$ can be derived. Further estimates predict (i) only borderline thermodynamic stability for alkali-metal hexachlorophosphates, MPCl₆ (M = K, Cs), and (ii) no apparent thermodynamic barrier to the formation of a PCl₄⁺Cl⁻ type structure. Thermochemical radii of 1.50 Å and 3.46 Å are estimated for PCl_4^+ and PCl_6^- , respectively.

Recently, interest has been revived^{$1-4$} in solid-state modifications of phosphorus(V) chloride. Whalley et al. have reported the production of a metastable phase (phase **111)** by application of pressure to normal, tetragonal PCl, (phase **11,** $\overline{PCl_4}$ + $\overline{PCl_6}$; investigations of phase diagrams,¹ Raman spectra,² and solid-state ³¹P NMR spectra³ are reported. Raman spectra of phase **I11** are identical with those of products obtained previously by sublimation⁵⁻⁸ and chemical methods.^{4,9} From measurements of the intensities of the ${}^{31}P$ resonances, 3 the phase III modification was formulated as $2PCl₄⁺·_{PCl₆}·_·Cl₋,$ confirming quantitatively an earlier suggestion⁹ of the presence the phase III modification was formulated as $2PCl_4^+ \cdot PCl_6^- \cdot Cl^-$,
confirming quantitatively an earlier suggestion⁹ of the presence
of single halide ions in the lattice. The ionization $PCl_6^- \rightarrow$
 $PCl_1 + \frac{1}{2}Cl^-$ was a of single halide ions in the lattice. The ionization $\text{PCl}_4^- \rightarrow \text{PCl}_4^+ + 2\text{Cl}^-$ was represented as the first known example of pressure-induced ionization in solids, a phenomenon wellknown in liquids, e.g., in molten salts.¹⁰ Work in these laboratories has shown that such solid-state ionic isomerism is not rare, 11,12 and that important consequences for inorganic chemistry are entailed, e.g., in the preparation and stability **of** complex halides. **In** this paper we report calculations of the lattice energies of phase **I1** and phase **I11** and discuss, inter alia, wider implications, including hexachlorophosphate salt stabilities.

Calculations

The tetragonal cell of normal, phase II, PCl₅ has space group *P4/n* with $a = 9.22$ Å and $c = 7.44$ Å and comprises PCl₄⁺ units sandwiching nearly octahedral PCl_6^- units.¹³⁻¹⁶ A more

- (1) R. Cahay and E. Whalley, *J. Chem. Phys.*, 70, 5534 (1979).
- (2) R. Cahay, P. T. T. Wong, and E. Whalley, *J. Chem. Phys., 70,* 5539 (1979). **J. A.** Ripmeester, P. **T. T.** Wong, D. W. Davidson, and E. Whalley, *J.*
- *Chem. Phys., 70,* 5545 (1979). **A.** Finch, P. N. Gates, H. D. B. Jenkins, and **K.** P. Thakur, *J. Chem.* (4)
- *SOC., Chem. Commun.* 579 (1980). **A.** I. Popov, D. H. Geske, and **N.** C. Baenziger, *J. Am. Chem. Soc., 78,*
- 1793 (1956). H. Chihara, M. Nakamura. and **K.** Masukane, *Bull. SOC. Chem. Jpn.,*
- **40, 50** (1967). **R.** Baumgartner, W. Sawodny, and J. Goubeau, *Z. Anorg. Allg. Chem.,*
- **333,** 171 (1966). **S.** G. Shore and H. Knachel, personal communication.
- **A.** Finch, P. **N.** Gates, F. **J.** Ryan, and F. F. Bentley, *J. Chem. Soc.,* (9) *Dalton Trans.* 1863 (1973).
- B. Cleaver and **S.** I. Smedley, *Trans. Faraday Soc.,* **67,** 1115 (1971). F. F. Bentley, **A.** Finch, P. N. Gates, F. J. Ryan, and **K.** B. Dillon, *J.*
- *Inorg. Nuclear Chem.,* **36,** 457 (1974).
- **A.** Finch and P. **N.** Gates, unpublished observations.
- R. W. G. Wyckoff, "Crystal Structures", 2nd ed., **Vol.** 2, Interscience, New York, 1964.
- **A.** M. de Ficquelmont, G. Wetroff, and H. Howell, *C. R. Hebd. Seances Acad. Sci.,* **211,** 566 (1940).

Table **I.** Crystal Parameters for the Proposed Model for Phase **111,** $2PCl₄ \cdot PCl₆ \cdot Cl$ ⁻ $(a = b = 9.22 \text{ A}, c = 22.32 \text{ A})^b$

		x	у	z
$P (PCl4 + basal cell planes)$	$6e^a$	0.25	0.25	$0.0\,$
$P (PCla + arising from$ dissociated PCI ₄ ⁻)	2а	0.25	0.75	0.5400
$P (PCl6^- ions)$	2а	0.25	0.75	0.2067
	2а	0.25	0.75	0.8734
Cl (PCl ₄ ⁺ basal cell planes)	8f	0.3100	0.0840	0.0500
	8f	0.3100	0.0840	0.7167
	8f	0.3100	0.0840	0.3533
Cl (PCl ₄ ⁺ arising from dissociated PCl_{κ} ⁻)	8f	0.6650	0.0460	0.4600
Cl (PCl, ions, equatorial Cl)	8f	0.6650	0.0460	0.1267
	8f	0.6650	0.0460	0.7934
Cl (PCl _s ions, axial Cl)	2a	0.25	0.75	0.9667
	2a	0.25	0.75	0.1133
	2a	0.25	0.75	0.3000
	2a	0.25	0.75	0.7800
Cl (free $Cl-$ ions)	2а	0.25	0.75	0.4466
	2a	0.25	0.75	0.6333

^a Symmetry coordinates: 2a, $\pm(\frac{1}{4}, \frac{3}{4}, z)$; 6e, $\pm(\frac{1}{4}, \frac{1}{4}, 0)$, \pm ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{3}$), \pm ($\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{3}$); 8f, \pm (x, y, z), \pm ($\frac{1}{2}$ – x, $\overline{$ and further work is being undertaken to ascertain the accurate co- ordinates.

recent study of PCl_5 by Preiss^{17} is substantially in agreement with the earlier work, except that the plane of the four equatorial Cl atoms in the $\overline{PCl_6}$ units is situated slightly above and below the plane of the phosphorus atoms, the centrosymmetric nature of the cell being preserved.

Schematic diagrams of the two structures are shown in Figure 1. No crystal structure is currently available for phase **III** (2PC I_4^{\dagger} +PC I_6^{\dagger} -Cl⁻), and for the purposes of the present calculations, we have modeled the phase **I11** modification as shown in Figure 2. To obtain this model structure we have assumed that (i) ionization takes place in selected $PCl₆$ ions to generate $PCl₄⁺$ and Cl⁻ ions, (ii) in order to achieve the necessary stoichiometry the unit cell is extended in the c direction, such that *a* and *b* remain at 9.22 Å while $c = 22.32$ **A,** and (iii) the arrangement of ions (which is not a unique choice) is shown schematically in Figure **2.** The proposed parameters defining the crystal structure are listed in Table **I.**

On the basis of the unit cells shown in Figures 1 and **2,** the

- (15) H. M. Powell, D. Clark, and **A.** F. Wells, *Nature (London),* **145,** 149
- (1940).
- (16) D. Clark, H. M. Powell, and **A.** F. Wells, *J. Chem. Soc.,* 642 (1942).
- (17) **H.** Preiss, *Z. Anorg. Allg. Chem. 380,* 52 (1971).

^{*}To whom correspondence should be addressed at the University of Warwick.

$$
\mathcal{A}^{\mathcal{A}}
$$

lattice energies of phase I1 and phase I11 can be defined by the following processes: ing processes:
phase II (c) \rightarrow 2PCl₄⁺(g) + 2PCl₆⁻(g)

phase II (c)
$$
\rightarrow
$$
 2PCl₄⁺(g) + 2PCl₆⁻(g)

phase III (c) \rightarrow 8PCl₄⁺(g) + 4PCl₆⁻(g) + 4Cl⁻(g)

the values calculated being dependent on the structures assumed for these phases. With use of the computational program **LATEN'*** and the theory of direct minimization described and used in earlier papers, $19-22$ results of calculations based

- **(18) H. D. B. Jenkins and K. F. Pratt,** *Comp. Phys. Commun.,* **21, 257 (1980).**
- **(1 9) H. D. B. Jenkins and K. Pratt,** *Proc. R. SOC. London, Ser. A, 356,* **11** *⁵*
- **(1977). (20) H. D. 8. Jenkins and K. F. Pratt,** *J. Chem. SOC., Faraday Trans.* **2,74, 968 (1978).**
- **(21) H. D. B. Jenkins and K. F. Pratt,** *Ado. Inorg. Chem. Radiochem.,* **22, l(1979).**
- **(22) H. D. B. Jenkins and K. F. Pratt,** *Prog. Solid Stare Chem.,* **12, 125 (1979).**

on the three structures drawn in Figures 1 and 2 and also on a structure assuming that the PCl₅ crystal exists as $PCl₄$ ⁺Cl⁻ were made. For the latter calculation, we allow the PCl_6^- ions of the unit cells of Figure 1 to become PCl_4^+ ions and dissociated free axial Cl⁻ ions. For the calculation, a "basic" radius of 1.512 Å was assumed for free chloride ions;¹⁹ corresponding charges and radii parameters for the PCl_4^+ ion, consistent with the minimum energy, requirement were obtained. **A** similar model for the PCl_4^+ ion was then retained in the calculations on phase I1 and phase I11 structures.

From the results of these calculations it is possible to (i) obtain estimates of the enthalpies of formation of the gaseous PCl_4^+ and PCl_6^- ions and (ii) predict the likely stabilities of some hexachlorophosphate salts.

ReSults

(1) Lattice Energies. Table I1 summarizes the total lattice potential energies (comprised of electrostatic, repulsive, and dispersive components) calculated for the following processes for the three types of structure considered:

$$
PCl_3(c) \xrightarrow{U_1} PCl_4+(g) + Cl^-(g)
$$

\n
$$
(PCl_4+Cl^-)
$$

\nphase II(c)
\n
$$
(\frac{U_{II}}{2} + \frac{1}{2}PCl_4+(g) + \frac{1}{2}PCl_6-(g)
$$

\nphase III(c)
\n
$$
\frac{U_{III}}{2}PCl_4+ \frac{1}{2}PCl_6- \frac{1}{2}PCl_4+(g) + \frac{1}{2}PCl_6-(g)
$$

\nphase III(c)
\n
$$
\frac{U_{III}}{2/3}PCl_4+(g) + \frac{1}{3}PCl_6-(g) + \frac{1}{3}Cl^-(g)
$$

Minimization of the lattice energy in the calculation of U_1 (for the Figure 1a structure) leads to a charge distribution $q_p =$ 1.352 and $q_{\text{Cl}} = -0.88$, and this model for the ion (represented as four chlorine atoms) corresponds to a "basic" radius for chlorine of 1.286 **A.** The corresponding calculation based on the Figure 1b structure gave an identical charge distribution on PC14+ with a chlorine atom radius of 1.309 **A.** For calculations on phases II and III, the above model for $PCl₄$ ⁺ was adopted. Results are summarized in Table 11.

(2) Derived Thermodynamic Data. The calculated lattice energies, together with the known enthalpy of transition of phase II \rightarrow phase III, $\Delta H_{\text{II}\rightarrow\text{III}}$ (2.4 kJ mol⁻¹),¹ can now be analyzed on the basis of the cycle in Scheme I to yield various thermodynamic data. Hence, we have *eq* 1 and 2. Using the

$$
V_2 \Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g})) + V_2 \Delta H_f^{\Theta}(\text{PCl}_6^-(\text{g})) =
$$

$$
U_{\text{II}} + RT + \Delta H_f^{\Theta}(\text{PCl}_5(\text{c}))
$$
 (1)

$$
\gamma_3 \Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g})) + \frac{1}{3} \Delta H_f^{\Theta}(\text{PCl}_6^-(\text{g})) + \frac{1}{3} \Delta H_f^{\Theta}(\text{Cl}^-(\text{g})) = U_{\text{III}} + \frac{1}{6} R T + \Delta H_{\text{II} \to \text{III}} + \frac{1}{6} \Delta H_f^{\Theta}(\text{PCl}_3^-(\text{c}))
$$
 (2)

calculated lattice energies U_{II} (based on the structure in Figure la for phase II) and U_{III} (based on the model derived from the structure in Figure la) and the known enthalpy of transition, $\Delta H_{\text{II}\rightarrow\text{III}}$, together with the enthalpies of formation of PCI₅(c) $(-443.5 \text{ kJ} \text{ mol}^{-1})^{23}$ and of Cl⁻(g) $(-246 \text{ kJ} \text{ mol}^{-1})^{24}$ we obtain eq **3** and 4. Solution of eq 3 and 4 leads to the

$$
\frac{1}{2}\Delta H_{\rm f}^{\Theta}(\text{PCl}_{4}^{+}(g)) + \frac{1}{2}\Delta H_{\rm f}^{\Theta}(\text{PCl}_{6}^{-}(g)) = -209.0 \text{ kJ mol}^{-1}
$$
\n(3)

$$
\frac{\gamma_3 \Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g})) + \frac{1}{3} \Delta H_f^{\Theta}(\text{PCl}_6^-(\text{g})) = 14.8 \text{ kJ} \text{ mol}^{-1}}{(4)}
$$

⁽²³⁾ D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, "Selected Values of Chemical Thermodynamic Properties", NBS Technical Note 270-3, Washington D.C., 1968.

⁽²⁴⁾ CATCH Tables, University of Sussex, United Kingdom, 1974.

Table **II.** Lattice Energy Calculations for Various PCl, Structures^a

^a PCl₄⁺Cl⁻ structures based on the replacement of two PCl₄⁻ ions in Figure 1, a and b, by two PCl₄⁺ ions and dissociated free coaxial Cl⁻ ions. ^{*b*} Figure 1a type. ^{*c*} Figure 1b type. ^{*d*} Our model, Figure 2.

Scheme I

/ > **Phase III(c)**

values $\Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g})) = 462.4 \text{ kJ} \text{ mol}^{-1}$ and $\Delta H_f^{\Theta}(\text{PCl}_6^-(\text{g}))$ $= -880.4 \text{ kJ} \text{ mol}^{-1}$. In addition, the double chloride affinity A_{2Cl} - of PCl₄⁺ in the gas phase is defined by eq 5 from which

$$
PCl4+(g) + 2Cl-(g) \xrightarrow{A_{2G}^-} PCl6-(g)
$$
 (5)

 $A_{2\text{Cl}^+} = \Delta H_f^{\Theta}(\text{PCl}_6^-(g)) - \Delta H_f^{\Theta}(\text{PCl}_4^+(g)) - 2\Delta H_f^{\Theta}(\text{Cl}^-(g))$
can be calculated as -850.8 kJ mol⁻¹. Further, using the data $\Delta H_f^{\Theta}(\text{PCl}_3(g)) = -374.9 \text{ kJ} \text{ mol}^{-1}$,²³ $\Delta H_f^{\Theta}(\text{PCl}_3^+(g)) = +757.3$ kJ mol⁻¹,²³ $\Delta H_f^{\Theta}(PCl_3(g)) = -287.0$ kJ mol⁻¹,²³ $\Delta H_f^{\Theta}(PCl_3(l))$ $= -319.7$ kJ mol⁻¹, and $\Delta H_f^{\Theta}(\text{PCl}(g)) = +149.6$ kJ mol⁻¹,²⁵

we can obtain the enthalpies for the following processes:
 $PCl_5(g) + Cl^-(g) \rightarrow PCl_6^-(g)$ $\Delta H_1 = -259.5 \text{ kJ mol}^{-1}$

 $\text{PCl}_3(c) + \text{Cl}^-(g) \rightarrow \text{PCl}_6^-(g)$ $\Delta H_2 = -190.9 \text{ kJ mol}^{-1}$
 $\text{PCl}_4^+(g) + \text{Cl}^-(g) \rightarrow \text{PCl}_5(g)$ $\Delta H_3 = -591.3 \text{ kJ mol}^{-1}$

(3) Thermochemical Radii. Using eq **2** of ref **26** we can estimate, on the basis of the calculations made above, a thermochemical radius for the two ions: $PCl_4^+ = 1.50 \text{ Å}$ and $PCl₆⁻ = 3.46$ Å.

Discussion

(1) Comparison of Calculated Data **with Other Results.** At this stage it is useful to assess the credibility of the calculated thermodynamic data since no previous estimates of ΔH_f^{Θ} - $(PCl_4^+(g))$ and $\Delta H_f^{\Theta}(PCl_6^-(g))$ have been made. A comparison of the differences between values $\Delta H_f^{\Theta}(MH_3(g)),$ $\Delta H_f^{\Theta}(\text{MH}_3^+(\text{g}))$ and $\Delta H_f^{\Theta}(\text{MH}_4^+(\text{g}))$ (M = N, P) with the corresponding differences generated between $\Delta H_f^{\Theta}(\text{PCl}_3(g)),$ $\Delta H_f^{\Theta}(\text{PCl}_3^+(\text{g}))$, and $\Delta H_f^{\Theta}(\text{PCl}_4^+(\text{g}))$ is given in Table III. It can be seen that the trend among the chloro **species** appears to be consistent with those among the analogous nitrogen and phosphorus hydride species, thus giving confidence in the calculated value of $\Delta H_f^{\circ}(\text{PCl}_4^+(g))$. Insufficient literature data are available for direct comparison of the result obtained for $\Delta H_f^{\Theta}(\text{PCl}_6^{-}(g))$, but some general comments can be made. The enthalpy for the process

$$
WF_5(c) + F^-(g) \rightarrow WF_6^-(g)
$$

has been calculated²⁸ as -450 kJ mol⁻¹, from which we obtain $\Delta H_f^{\Theta}(\text{WF}_6^{-}(g)) = -2177 \text{ kJ} \text{ mol}^{-1}$. In addition, Peacock²⁹ has obtained values of the standard enthalpies of the processes
 $KF(c) + MF_5(c) \rightarrow AMF_6(c)$ (M = W, Mo, P, Sb)

$$
KF(c) + MF5(c) \rightarrow AMF6(c) (M = W, Mo, P, Sb)
$$

from which we calculate values for $\Delta H_f^{\Theta}(\text{KMF}_6(c))$ (Table IV). The value for $\Delta H_f^{\Theta}(\text{KPF}_6(c)) = -2337 \text{ kJ} \text{ mol}^{-1}$ may be compared to our estimated value for $\Delta H_f^{\Theta}(\text{KPCl}_6(c))$ = **-836.9** kJ mol (below). Such a difference in the enthalpies of formation when chlorine replaces fluorine seem reasonable when compared to values for pairs of A_2MX_6 compounds (Table **V).**

(2) Stability of PCl₆⁻ Salts. Although alkylammonium hexachlorophosphates are well-known, no alkali-metal salts, $MPCl₆$, have been reported; preliminary attempts to synthesize $CsPCl_6$ in this laboratory were not successful. Predictive calculations are hence of interest, especially for plausible decomposition reactions, e.g., MPCl₆ \rightarrow MCl + PCl₅. Using the Kapustinskii equation, based on the Born-Mayer equation, and assuming $r(K^+) = 1.33$ Å, we estimate the lattice energy

- **R. D. Peacock, personal communication. V.** *G.* **Bamburov,** *Tr. Inst.* **Khim. Uralskogo Feliala** *AN SSSR,* **No. 7,**
- **27 (1963). K.** *G. G.* **Hopkins, Ph.D. Thesis, University** of **Hull, 1970.**

⁽²⁵⁾ M. Kh. Karapet'yants and M. K. Karapet'yants, 'Handbook of **Thermodynamic Constants of Inorganic and Organic Compounds", Ann Arbor-Humphrey Science Publishers, Ann Arbor, MI.**

⁽²⁶⁾ H. D. B. Jenkins and K. P. Thakur, *J.* **Chem.** *Educ.,* **56, 576 (1979).**

H. D. B. Jenkins and D. F. C. Morris, *Mol.* **Phys., 32, 231 (1976). J. Burgess and R. D. Peacock,** *J.* **Fluorine Chem., 10, 479 (1977).**

Table **111.** Standard Enthalpies of Formation of Some Chloro and Hydrido Species of Phosphorus and Nitrogen

compd	$\Delta H_f^{\Theta}/kJ$ mol ⁻¹	ref
NH ₃ (g) $NH3+(g)$ $NHa+(g)$ PH ₂ (g) PH, (g) $PH_a^+(g)$ $\text{PC1}_3(g)$ ${PCl}_{3}^{+}(g)$	-46.1 985 939.4 ${309}$ 630.0 5.4 1010 1015.0 665.0 { 350 -287.0 1044 757.3	23 23 27 23 25 25 23 23
$\text{PCl}_4^{\text{+}}(\text{g})$	462.4 \$295	this work

Table **IV.** Enthalpies of Reaction, ΔH_R^0 , for

and Derived Standard Enthalpies of Formation, ΔH_f ^e (KMF₆(c)) $KF(c) + MF_s(c) \xrightarrow{\Delta H_R \Theta} KMF_s(c)$

M	$-\Delta H_{\mathbf{R}}^{\mathbf{\Theta}}/$ kJ mol ^{-1<i>a</i>}	ΔH_f e. $(KMF_6(c))/$ kJ mol ⁻¹	
W	203	2227	
Mo	118	2072	
P	174	2337	
Sb	183	2088	

^a Reference 29.

Table **V.** Comparison of the Standard Enthalpies of Formation of Some Hexachloro and Hexafluoro Compounds

$-\Delta H_f^{\alpha}(\mathbf{c})/$			$-\Delta H_f^{\mathbf{\Theta}}(c)$		
compd	kJ mol ⁻¹	ref	compd	kJ mol ⁻¹	ref
KPF.	2337	29	K , TiCl.	1747	21
KPC1	836.9	this work	K, GeF	2600	31
K , Ti F_{ϵ}	2910	30	$Rb,$ GeCl.	1464	31

of $KPCl_6$ (U_{POT}) as 470.7 kJ mol⁻¹. It may be shown that $\Delta H_i^{\Theta}(\text{KPCl}_6(\text{c})) =$

$$
\Delta H_{\text{f}}^{\Theta}(\text{K}^{+}(\text{g})) + \Delta H_{\text{f}}^{\Theta}(\text{PCl}_{\text{6}}^{-}(\text{g})) - U_{\text{POT}}(\text{KPCl}_{\text{6}}(\text{c}))
$$
 (6)

and hence, putting $\Delta H_f^{\Theta}(K^+(g)) = 514.2 \text{ kJ mol}^{-1}$,³² we calculate $\Delta H_f^{\Theta}(\text{KPCL}_s(c)) = -836.9 \text{ kJ} \text{ mol}^{-1}$. $\Delta G_f^{\Theta}(\text{KPCL}_s(c))$ may then be estimated via the standard entropy of formation, $\Delta S_f^{\Theta}(KPCl_6(c))$; following Latimer,³³ a value of the absolute entropy of $KPCl_6$, S_{298} °($KPCl_6$) = 250.8 J K^{-1} mol⁻¹, can be calculated from S° _{K+} = 38.5 J K⁻¹ mol⁻¹, S° _P = 38.9 J K⁻¹

mol⁻¹ (estimated from Latimer's equations),³⁴ and $S^{\circ}{}_{Cl} = 28.9$ **J** K⁻¹ mol⁻¹ (assuming the case where the average cation charge is 3+). From this, a value of $\Delta S_f^{\circ}(\text{KPCl}_6(c)) = -0.52$ kJ mol⁻¹ K⁻¹ is estimated on the basis of

$$
\Delta S_1^{\circ}(\text{KPCl}_6(c)) = S_{298}^{\circ}(\text{KPCl}_6) - S_{298}^{\circ}(\text{K}) - S_{298}^{\circ}(\text{P}) - 3S_{298}^{\circ}(\text{Cl}_2)
$$

where S_{298}° °(K), S_{298}° °(P) at S_{298}° °(Cl₂) are the absolute entropies of the elements in their standard states. Hence tropies of the elements in their standard states. Hence $\Delta G_f^{\Theta}(\text{KPCl}_6(c)) \approx -682 \text{ kJ} \text{ mol}^{-1}$ at ambient temperatures. **A** similar calculation yields $\Delta G_f^{\text{e}}(\text{CsPCl}_{6}(c)) \approx -706 \text{ kJ mol}^{-1}$. Thus for the decomposition reaction $P(K)$, S_{298}° (P) at S_{298}° (Cl₂) are the is
the elements in their standard state
 $I_6(c)$ \simeq -682 kJ mol⁻¹ at ambient te
lculation yields ΔG_f° (CsPCl₆(c) \simeq -7
ne decomposition reaction
MPCl

$$
\text{MPCl}_{6}(c) \xrightarrow{\Delta G_{R}^{\Theta}} \text{MCl}(c) + \text{PCl}_{5}(c)
$$
\n
$$
\Delta G_{R} = \Delta G_{f}^{\Theta}(\text{MCl}(c)) + \Delta G_{f}^{\Theta}(\text{PCl}_{5}(c)) - \Delta G_{f}^{\Theta}(\text{MPCl}_{6}(c))
$$

leading to values of ΔG_R^{Θ} of -37.5 and -5.6 kJ mol⁻¹ for the potassium and cesium salts, respectively. Hence, the stabilities of such alkali-metal hexachlorophosphates must be considered as borderline.

(3) Stability of a PCI₄⁺Cl⁻ Structure. Phosphorus(V) bromide is known to have a $PBr_4^+Br^-$ formulation,¹³ and hence the stability of an analogous chloride structure is of interest. The enthalpy difference between the normal (phase 11) and this hypothetical form of PCl_5 may be written as

$$
\Delta H^{\Theta}_{II \to hyp} = (U_{II} - U_{hyp}) + \frac{1}{2}RT - \frac{1}{2}A_{2Cl} - \frac{1}{2}AT
$$

where U_{hyp} and U_{II} are the lattice energies of the hypothetical PCl_4Cl and (normal) PCl_4PCl_6 , respectively, and A_{2Cl} is the double halide affinity of PCl_4^+ , discussed earlier. Calculations using the structure in Figure 1a led to a value of $U_{11} - U_{\text{hyp}}$ \simeq -460 kJ mol⁻¹; calculations based on Figure 1b led to a corresponding value of $\simeq -432$ kJ mol⁻¹, hence a mean value of $\Delta H_{\text{II}\rightarrow\text{hyp}}$ of approximately -19 kJ mol⁻¹ is reasonable. Thus if the entropy change is $\Delta S^{\Theta}{}_{\text{II} \to \text{hyp}} \ge -60 \text{ J K}^{-1} \text{ mol}^{-1}$, there should be no obvious thermodynamic barrier to the formation of PCl4+C1- although a significant activation barrier would be expected for dissociation of the PCl_6^- ion.

Registry No. 2PCl₄⁺.PCl₆⁻·Cl⁻, 75324-31-1; PCl₄⁺·Cl⁻, 60951-36-2; PCl_4^+ - PCl_6^- , 19453-01-1; PCl_4^+ , 15169-50-3; KPCl₆, 79593-28-5; PCl_6^- , 16920-87-9; CsPCl₆, 79593-29-6.

⁽³²⁾ **"JANAF** Thermochemical Tables", D. **A.** Sturl and H. H. Prophet, **Eds., Dow** Chemical **Co.,** Midland, **MI,** 1960-1966.

⁽³³⁾ W. M. Latimer, "Oxidation Potentials", 2nd *ed.,* Prentice-Hall, Engelwood Cliffs, NJ, 1952.

⁽³⁴⁾ W. M. Latimer, *J. Am. Chem. Soc.,* **43, 818** (1921).